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Abstract— With the invention of Internet and communication 
network, amount of data sharing and transmitting has been 
increased. Because the bandwidth is always limited, whether the 
Internet or a Local Area Network is taken into consideration, 
transmission of large amount of digital data has ever been a 
challenge. Digital Image or Multimedia Data, consisting of 
relatively higher number of bytes as compared to other 
documents, often falls in trouble while being used in networked 
computing. Therefore, compression of digital image deserves 
more importance than the simple documents do. Although, the 
storage devices are offering huge capacity nowadays, bandwidth 
of a network is not being increased in that proportion. Thus, 
storing a digital image in a large capacity storage device may 
consider compression less important, but transmission of a 
digital image over a network must yet require the image in 
compressed format. Again, for today’s heterogeneous network 
structure; common, easy and less-time-consuming compression-
decompression (CODEC) technique is essential that is simple and 
completely lossless. To meet all these demands, we modify a 
spatial domain lossless image data compression method that uses 
simple arithmetic operations in order to reduce the coding 
redundancy of a digital image. After a careful exploration of the 
focused lossless image compression method and finding out its 
failure case, we also took its existing improvements into 
consideration and revealed their limitations. Then, in this paper, 
we present a modified approach for lossless image compression 
in spatial domain addressing Run Length Encoding (RLE) 
mechanism. The proper inquiry over the focused algorithm and 
its improvement is carried out throughout this task and 
application of RLE upon a certain bit-stream of the focused 
improvement is performed so that more compression ratio is 
achieved.  
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Coding Redundancy, Computational Overhead, Psychovisual 
Redundancy, Run Length Coding, Spatial Domain Lossless 
Image Compression. 

I. INTRODUCTION 

Generally, the compression of a digital image takes place 
into two different domains- spatial domain and frequency 
domain, unlike the ordinary documents [1]. This is because 
the frequency distribution of image data is different than that 
of simple texts or documents and the amount of data in this 
case is usually much higher [2, 3, 4, 5]. Compressing a digital 
image in frequency domain is advantageous in the sense that it 
can achieve better compression ratio as compared to its spatial 
domain counter part [5]. However, as the concept of 

ubiquitous computing is being spread out and networks are no 
longer confined to a homogeneous environment, small 
computing devices have been a significant part of network 
computing. Because their processing power is less as 
compared to the desktop/notebook computers and they are 
continuously generating, sharing and transmitting thousands 
of digital images every moment, the complex compression 
algorithms of frequency domain is no good choice in general. 
In such case, spatial domain image compression methods are 
popular since they are computationally less complex. 
Furthermore, we can divide the spatial domain image 
compression algorithms into two categories- one preserves the 
full visual quality of an image while compressing it and the 
other intentionally losses some of its visual quality in order to 
acquire more compression ratio. Hence, compression and 
quality stands as a trade-off in this arena [2, 3, 4]. 
Nevertheless, various studies and researches have been carried 
out regarding how an image data in spatial domain can be best 
compressed apart from sacrificing the visual quality of the 
image. The theories and inventions of the image compression 
algorithms without affecting image quality comprise a 
standard of image compression- lossless image compression 
for both domains [2, 3, 4, 5, 6]. Another standard of image 
compression considers the limitation of human eyes on 
psychovisually redundant data and therefore losses small 
image details beside achieving higher compression ratio. This 
standard of image compression is known as lossy mode of 
image compression in both spatial and frequency domain [1, 2, 
5, 6]. The famous digital imaging format JPEG, frequently 
used in today’s computing industry, is such a lossy mode of 
image compression [7, 8].  

 
Although, lossy compression standard is advantageous 

when the quality is less significant; for satellite imaging and 
diagnostic images from medical sector, lossless mode is 
preferred because a little loss of visual information in such 
digital imaging fields may lead to serious wrong decision. 
Since all the smart computing devices and tablet computers 
have now access to such imaging fields due to the 
advancement in network topology, they require the noiseless 
visual information in images, along with the simple 
computational complexity of the algorithm [9]. Therefore, the 
branch of spatial domain lossless image compression is 
motivated.  
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In this paper, we investigate a novel spatial domain lossless 
image compression algorithm suggested by Syed & Mehdi [10] 
and its improved extension as given by Hasan & Nur [9]. We 
find out the cases for which the algorithm [10] suffers from 
overhead bits and look for a way to further compress the 
improved technique [9]. The rest of this paper is organized as 
follows. Section II explores the background study of spatial 
domain lossless and near-lossless image compression 
algorithms while section III describes the focused algorithm 
suggested by Syed & Mehdi. Section IV illustrates the 
improvement suggested by Hasan & Nur [9]. After careful 
explanation of all these necessary details, we extend the 
previous approach proposed by Hasan & Nur [9] in section V. 
Section VI summarizes the performance studies followed by 
the conclusion in section VII. 

II. BACKGROUND STUDY 

The lossless image compression has been a significant issue 
in recent years due to the increasing demand of storing huge 
amount of high quality multimedia data in a given small 
storage. This branch of image compression has achieved 
numerous inventions during last few decades. Some of the 
algorithms deal with an image in spatial domain [6, 9, 10, 11, 
12, 13, 14, 15, 16, 17] while the others work in frequency 
domain [7, 8, 18]. Simple data compression technique can also 
be applied on the images as, after all, all digital images are 
binary sequences [19]. A number of image compression 
algorithms have been innovated that consider the fact that a 
large area of a digital image contains same gray level value 
and therefore finding the region property, a single gray value 
can be stored instead of all [6, 20, 21, 22]. All of these 
researches presented a compression technique that is 
somehow better than their older counterparts [6]. However, 
lossless image compression can be conducted in two different 
domains as mentioned in section I.  

 
In digital image compression world, overhead bits are 

defined as the additional number of bits required to compress 
an image [4, 9]. For maximum spatial domain image 
compression techniques, getting overhead bits is quite 
possible since every lossless strategy has to preserve some 
non-image information to decode the compressed image in a 
lossless manner. Since these strategies depend largely on 
particular image content, whenever the non-image information 
becomes larger than the original image information, an 
overhead occurs [9]. This can be exemplified by the popular 
Run Length Encoding technique. Run length encoding is a 
binary data compression technique that takes into account how 
many times (or run) a particular binary state is present in the 
data. The run of the binary state is then preserved along with 
the state. The run itself is not original data, but it is required to 
finally achieve the compression. Hence, preserving non image 
information in order to achieve compression is not a new 
concept [9].    

 
The algorithm we are going to investigate and modify 

throughout the rest of the sections of this paper belongs to this 

category of image compression mechanism. It makes use of an 
extra block header in front of each 4×4 image block in order 
to keep the information regarding the corresponding block and 
uses less than 8 bits for coding each pixel of that block. 
However, Hasan & Nur [9] discovered the cases for which the 
focused algorithm proposed by Syed & Mehdi [10] suffers 
from overhead bits. Hasan & Nur [9] also suggested an 
improved approach for reducing the overhead bits of [10]. 
However, still the compression technique is not free from 
overhead bits. Our study will survey the reasons in next of the 
sections and propose a modified approach to this algorithm so 
that the final number of bits is reduced significantly. 

III. THE FOCUSED ALGORITHM 

The algorithm proposed by Syed & Mehdi requires an 
image to be divided into a number of non-overlapping m×n 
blocks, where the standard value of m and n is 4 [9, 10]. 
However, the users have the freedom to choose any block size 
depending on their particular application. After finding a 
block, the algorithm simply looks for its maximum and 
minimum gray levels - MAX and MIN. The key point of 
reducing the coding redundancy of a block using the 
technique is that, if MAX-MIN can be represented by k bits, Pi-
MIN must also be represented by k bits, where Pi is any pixel 
of the block. Hence, the algorithm necessitates to subtract 
MIN from MAX and every other pixel. This algorithm 
preserves a block-header in front of each m×n block that 
stores the MIN by 8 bits and a key k by 3 bits. Then all the 
pixels of the block are encoded using k bits. The key k tells us 
how many bits are required to represent each pixel of the 
block. For example, if MAX-MIN can be represented by 4 bits, 
k=4. Fig. 1 shows an example of how a block is compressed 
using the focused algorithm. The embedding and extraction 
procedure as given by Syed & Mehdi [10] is given in the 
following subsections. 

 

 

A. Encoding Steps of Focused Algorithm 

 
Step1: Select m and n for whole image. 
Step2: Take m×n non-overlapping block of image. 
Step3: Find the difference of Min and Max value in selected 

m×n block in X. 
Step4: Add 11 bits header (8 bits for Min value of block, and 3 

bits dedicated the no. of bits required to represent  X 
value’ in Y bits). 

Step5: Subtract each pixel from Min value of a block and store 
in separate Y bits of every pixel in new m×n  
 block. 

 

Fig. 1  Example Block Processing
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B. Decoding Steps of Focused Algorithm 

 
Step1: Parse the header and find out block size m and n. 
Step2: Find the Min (8 bit) value for each block. 
Step3: Parse another 3 bits which represent the no. of (Y) bits 

required for each pixel value. 
Step4: Read next Y bits, add its value to Min and regenerate 

the actual value of pixel. Repeat this step for all pixels 
in a block. 

Step5: Repeat the above steps for whole image and regenerate 
the original image. 

 

IV. OVERHEAD ANALYSIS AND IMPROVEMENT INVESTIGATION 

It is clear from the discussion of section III that the focused 
algorithm can essentially reduce the number of bits required to 
present a pixel in spatial domain. Yet, the study of Hasan & 
Nur [9] could prove that this algorithm suffers from a large 
amount of overhead bits. Since the algorithm preserves 11-bit 
header information in front of every m×n (or 4×4) block and 
then encodes every block pixel using the number of bits 
represented by k, it must result in 11 overhead bits for a block 
whenever k=8. That is, when MAX-MIN results in an integer 
to represent which at least 8 bits are required, then a typical 
4×4 block has to be embedded using 11 (header) bits+16×8 
(block-pixel) bits whereas the raw image could substantially 
encode that block using only 16×8 bits. This circumstance 
occurs whenever MAX-MIN ≥ 128 [9].  

 

 
Fig. 2 shows an example where a practical overhead block 

is presented. Hasan & Nur [9] showed that this phenomenon is 
very frequent and statistically at least 5.76% 4×4 gray-scale 
blocks for which this overhead occurs. For color images, the 
percentage is 2.10. Whatever the percentage of overhead 
blocks, undoubtedly, for such circumstances, the focused 
algorithm needs to preserve 11 extra bits for each block.  
 

The study of Hasan & Nur [9] attempted to find a way out 
in order to solve the problem. They suggested a simple 
approach where a 512×512 dimensional image should be 
divided into a number of 4×4 non overlapping blocks. Then 
the image should look like a 128×128 matrix where each entry 
is a 4×4 block as shown in Fig. 3. Each row of this 128×128 
matrix should now be perpended with a 128-bit header that is 
initially reset. Whenever an overhead block is encountered in 
the row, the corresponding bit in the 128-bit header is set and 
the 11-bit block header is not considered for that block [9]. 
During decoding, the decoder simply looks for the set bits in 

the 128-bit row header and don’t think over the 11-bits block 
header. For the reset bits, the decoder considers that there is 
an 11-bits block header. The improved encoding and decoding 
steps as given by Hasan & Nur [9] are given in the following 
subsections. 

 

 

A. Encoding Steps  

 
Step1: Prepend a 128 bit extra header in front of each block-

row, all bits are reset. 
Step2: Take a m×n non-overlapping block of image as done in 

focused algorithm (standard size of m and n is 4). 
Step3: Find the difference of Min and Max value in selected 

m×n block in X. 
Step4: If Max-Min ≥ 128 i.e. overhead block, set the 

corresponding bit in 128 bit header. Keep no 11 bit 
block-header. 

Step5: Subtract each pixel from Min value of a block and store 
in separate Y bits of every pixel in new m×n block.in 
separate Y bits of every pixel in new m×n  
 block. 

B. Decoding Steps 

 
Step1: Read first 128 bits, find which are overhead blocks. 
Step2: Except the overhead blocks, take 11 bits block-header 

and follow the decoding steps described in section III-A. 
 

Although the improved technique suggested by Hasan & 
Nur [9] could reduce a good number of overhead bits from the 
focused algorithm, they introduced 128 overhead bits in 
essence for each row of 128×128 matrix. We investigated that, 
there is a good possibility that many a time the 128-bit row 
header suggested by Hasan & Nur [9] will contain all zeros 
when no block of that row suffers from overhead. Our 
statistical study in section VI shows that, in general, around 
13.77% such rows of an image will contain no overhead 
blocks and therefore the 128-bit row header will simple be 
overhead bits.      

  

 
Fig. 3  A 512×512 Image is Considered as 128×128 Matrix. Each 

Element is a 4×4 Block 

 
Fig. 2  Example of Overhead Block 
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V. SUGGESTED FURTHER IMPROVEMENT 

Since we cannot exclude the advances suggested by Hasan 
& Nur [9] because of their effective way of reducing the 
original overhead bits introduced by our focused algorithm, 
we attempted to find out for how many cases their 
improvement is useless and suffers from 128-bits overhead for 
each row. We then incorporate the famous Run Length 
Encoding technique to further compress those 128-bits 

headers. Our idea simply takes each 128-bits row header of 
the image encoded by the steps of section IV-A and then finds 
the run of each binary state. Our resulting first bit denotes the 
first binary state of the 128-bits row header, next 8 bits stand 
for how many bits are required to represent each run. If these 
8 bits indicate 4 in decimal, next each 4-bits group will 
characterize a run. The following subsections introduce our 
improved encoding and decoding procedures. 

A. Improved Encoding Steps 

 
Step1: Prepend a 128-bits extra header in front of each block-

row, all bits are reset. 
Step2: Take a m×n non-overlapping block of image as done in 

focused algorithm (standard size of m and n is 4). 
Step3: Find the difference of Min and Max value in selected 

m×n block in X. 
Step4: If Max-Min ≥ 128 i.e. overhead block, set the 

corresponding bit in 128-bits header. Keep no 11 bit 
block-header. 

Step5: Subtract each pixel from Min value of a block and store 
in separate Y bits of every pixel in new m×n block. 

Step6: Make run length coding on the 128-bits header. The first 
bit represent the initial binary state of the header, next 8 
bits give the number n decided by the maximum 
possible bits required to represent each run, next each n 
bits group denote a run. 

 

B. Improved Decoding Steps 

 
Step1: Read the first bit of the stored bit-stream. 
Step2: Read next 8 bits and find n. 
Step3: Find the runs each by decoding n-bits group. 
Step4: Now follow the decoding procedure of section IV-B 

 

VI.  PERFORMANCE STUDIES 

We studied 200 standard textbook images and 1000 
randomly selected images for finding out how many times the 
128-bits row header contains either all ones or all zeros. 
13.77 % cases were come across for which the 128-bits row 
header contain either all ones or all zeros. Irrespective of the 
contents of the row headers, we applied Run Length Coding 
on the row headers and therefore achieved 4.97% better 
compression ratio on average for gray-scale images and 
3.11% better compression ratio for color images. Table 1 
shows the number of overhead bits reduced for some well-
known test images. Table 2 shows a comparative compression 
ratio analysis for the same images. Table 3 shows a portion of 
our statistical analysis to find out the cases where the 128-bits 
row header will contain all zeros or all ones. 

 
 
 
 
 

Again, in order to prove that the suggested improvement 
losses no bit, we calculated its ∆PSNR as defined by equation 
1. The ∆PSNR calculation is shown in table 4. 

 
∆PSNR=PSNR(focused algorithm)-PSNR(proposed modification) (1) 

TABLE I  
OVERHEAD BIT REDUCTION BY PROPOSED IMPROVEMENT 

Test Image Overhead Bits by 
Focused Algorithm 

Overhead Bits by 
Improvement of Hasan & 

Nur [9] 

Overhead Bit Reduction by 
Hasan & Nur [9] 

Overhead Bit 
Reduction by 

Proposed 
Improvement 

Baboon 21186 16384 4802 3345 
Lena 36509 16384 20125 16229 
Cameraman 72578 16384 56194 49397 
Iris 25060 16384 8676 8102 

TABLE II 
COMPARATIVE COMPRESSION RATIO ANALYSIS 

Test Image Compression Ratio  
by  

Focused Algorithm 

Compression Ratio  
by  

Hasan & Nur [9] 

Compression Ratio  
by  

Proposed Improvement 

Compression Ratio  
Gained 

Baboon 28.10 31.21 31.73 0.52 
Lena 35.66 38.98 40.27 1.29 
Cameraman 39.18 41.03 44.54 3.51 
Iris 27.62 29.88 31.00 1.12 

 

TABLE III 
PORTION OF STUDY TO FIND ALL 1’S OR ALL 0’S IN 128-BITS ROW 

HEADER 

Test Image Number of All Zero/ 
All One Row Header 

Baboon 21 
Lena 38 
Cameraman 16 
Iris 52 
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VII. CONCLUSIONS 

In this paper, we investigated a novel spatial domain 
lossless image compression method and its existing 
improvement. The overhead introduced by the focused 
algorithm is properly analyzed along with the careful 
overhead studies of the existing improvement. We then 
suggested a straight forward approach in order to further 
compress this current stream of studies. The statistical 
evidence shown in our study has proved that the proposed 
modification is capable of achieving higher compression ratio 
as compared to the focused algorithm and its improvement. 
Moreover, our proposed improvement did not loss any bit 
during the compression-decompression process. 
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TABLE IV 
∆PSNR CALCULATION 

Test Image ∆PSNR 
Baboon 0.00 
Lena 0.00 
Cameraman 0.00 
Iris 0.00 
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